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Abstract. In this paper, we propose a distance-based operator to revise on-
tologies with acyclic generalized terminology as its TBOX in description logic
SHOQ. Our operator resolves incoherence between the original ontology and
the newly received ontology. We first reformulate Dalal’s operator to SHOQ,
and propose a query-equivalent syntactical formulation based on a notion called
a revision policy. We then propose a tableau algorithm to generate such revision
policies and prove the correctness of the algorithm. We show that the complexity
of our algorithm stays at the same level as that of satisfiability check in SHOQ.

1 Introduction

Ontology change is an important topic in the Semantic Web. When ontologies evolve,
one of the central problems is to deal with logical contradictions [1,2]. When the newly
received information is considered as more reliable or important than the original one,
we will change the original ontology to resolve contradiction. In this case, this problem
is similar to the problem of belief revision. Therefore, instead of proposing a solution
from scratch, it is reasonable to reuse existing methods for belief revision to solve the
problem of inconsistency handling in ontology change.

The most influential work on belief revision is done by Alchourrón, Gärdenfors and
Makinson (AGM for short) who develop the so-called AGM theory of belief change
[3]. However, it is not a trivial task to apply AGM theory to Description Logics (DLs)
because some AGM assumptions fail for DLs. For example, the negation of a terminol-
ogy axiom cannot be defined in most of DLs. In [4], AGM postulates for contraction
are adapted to DLs, but they show that for some important DLs, such as SHIQ and
SHOIN , we cannot define a revision operator that satisfies all of their postulates.
Furthermore, in [5], the authors propose a set of postulates for characterizing a revi-
sion operator for ontologies in DLs by introducing axiom negation in ontologies. They
differentiate two kinds of logical contradictions in DLs during ontology change: incon-
sistency and incoherence. A DL-based ontology is inconsistent if it has no model and it
is incoherent if there is a concept in the ontology which always denotes an empty set.
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Indeed, incoherence is the logical error that occurs often in terminology part
of a DL-based ontology, when new terminology axioms are added into the origi-
nal ontology manually or automatically [6,7]. Although an incoherent ontology can
have a model, querying over it may result in undesirable conclusions. The following
scenario is adapted from [7], where new terminology axioms are added into an ontol-
ogy PROTON which consists of a set of terminology axioms, through human annotation
of the disjointness between two concepts. Suppose the following axioms are contained
in PROTON: {HydrographicStructure � Facility � Hydrographic, Reservoir � Lake �
HydrographicStructure, Lake � WaterRegion}. By learning that concept WaterRegion
is disjoint with concept Facility and adding this disjointness axiom to the above ontol-
ogy, we get an incoherence because concept Reservoir becomes unsatisfiable. Such a
logical error, if not repaired, will result in trivial inference as any concept subsumed by
concept Reservoir will become unsatisfiable. However, work on automatically resolving
incoherence of ontologies in ontology change is rare.

In this paper, we propose a novel distance-based revision operator for ontologies
in SHOQ [8] by adapting the well-known Dalal’s revision operator [9], which is an
intuitive, model-based revision operator satisfying all the AGM postulates. SHOQ is
an expressive DL that underpins the Web ontology language OWL-DL [10], and our
method is powerful in revising SHOQ ontology with acyclic generalized terminology
as its TBOX [11]. As far as we know, it is the first revision operator that resolves in-
coherence by following the principle of minimal change and is not dependent on the
syntactical forms of terminology axioms. Inspired by the work in [12], we propose a
notion named revision policy, which first substitutes a concept name by a fresh con-
cept name to resolve incoherence, and then asserts the cardinality difference between
the new name and the original one to guarantee minimal change. Based on the revision
policies, we can obtain an ontology which is query-equivalent to an ontology resulting
from the revision operator. Finally, we propose an algorithm to generate such revision
policies by extending the tableau algorithm for SHOQ. We prove its correctness and
show that the complexity our our algorithm stays at the same level as the complexity of
satisfiability check in SHOQ.

Proofs were omitted due to lack of space, but can be found in the technical report at
http://www.cs.utexas.edu/∼fkyang/rev.pdf.

2 Description Logic SHOQ
We assume that the reader is familiar with Description Logics (DLs) and refer to DL
Handbook [11] (Chapter 2) for more details. In this section, we give a brief review of
DL SHOQ. Let C, RA and I be disjoint sets of concept names, abstract role names, and
individual names. For R and S roles, a role axiom is either a role inclusion, which is of
the form R � S for R, S ∈ RA or a transitivity axiom, which is of the form Trans(R)
for R ∈ RA. A RBOX R is a set of role axioms. A role R is simple if, for ∗� the transitive
reflexive closure of � on R and for each role S, S ∗�R implies Trans(S) /∈ R. The
set of SHOQ-concepts (or concepts) is the smallest set such that each concept name
A ∈ C is a concept, for each individual name o ∈ I, {o} is a concept, and for C and
D concepts, R an abstract role, S a simple role, complex concepts can be built using
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conjunction (C � D), disjunction (C � D), concept negation (¬C), exists restriction
(∃R.C), universal restriction (∀R.C), atleast restriction (≥ n)S.C, atmost restriction
(≤ n)S.C. A TBOX is a finite set of concept inclusion axioms C � D, where C and
D are concepts. An ABox is a set of concept and role assertions C(a), R(a, b), and
(in)equality axioms a = b (a �= b), where C is a concept, R is a role and a and b
are individuals. An ontology is a triple O = 〈T ,R,A〉, where T is a TBOX, R is an
RBOX, and A is an ABOX. In our paper, O is considered as the set union of T , R
and A.

The semantics of SHOQ ontology is given by an interpretation I = (ΔI , ·I) that
consists of a non-empty set ΔI (the domain of I) and the function ·I which maps
individuals, concepts and roles to elements of the domain, subsets of the domain and
binary relations on the domain, respectively. For a complete definition of the seman-
tics of SHOQ we refer the reader to [8]. An interpretation I is called a model of an
ontology O, denoted as I |= O, if it satisfies each axiom in the ontology. We use
M(O) to denote the set of all models of ontology O. A concept C is unsatisfiable if
for each model I of O, CI = ∅. An ontology O is incoherent if there exists an unsat-
isfiable concept in O and it is inconsistent if it has no model. Although incoherence is
a notion different from classical view of inconsistency, it is firmly relevant with incon-
sistency [5]. That is, given an incoherent ontology O, and a set of concept assertions
A = {C(iC)|for each concept name C inO}, then O+ = O ∪ A, named as the en-
hanced ontology of O, is inconsistent. Furthermore, for nominal {o}, its unsatisfiability
is defined to be a form of inconsistency, as we fail to find an interpretation for the
individual o.

We are interested in the problem of incoherence handling in this paper. Since inco-
herence often occurs in terminologies, we assume all the ontologies consist of a TBOX
and an RBOX, with empty ABOX, and all the logical contradictions take the form of
incoherence. Furthermore, each TBOX has a restricted form, called acyclic generalized
terminology (AGT) [11]. In a generalized terminology, each axiom is a GCI C � D,
where the left hand side is a concept name, which occurs at most once on the left hand
side of axioms in the ontology. For each concept inclusion axiom C � D, if a concept
name C′ occurs in D, we say C uses C′, and the relation uses is transitive so that we can
obtain a transitive closure. A generalized terminology is acyclic if any concept doesn’t
use itself. In the setting of ontology revision, given two ontologies O and O′ which are
represented as a set of DL axioms and assertions, we assume that the TBOX of O ∪ O′

is an AGT. The concept names of O can be divided into two disjoint sets. BT are called
base symbols, in which each concept, named a primitive concept is a concept name oc-
curring only on the right hand side of the GCI, and NT are called named symbols, in
which each concept, named a defined concept, is the symbol occurred on the left hand
side of some axiom. Given the interpretations of symbols in BT , we can build models
of the terminology based on them.

Checking satisfiability of a SHOQ concept D is accomplished by a tableau al-
gorithm [8], which tries to explicitly build up a model by the completion forest for
the given concept and knowledge base by exhaustively applying a set of tableau
rules. The algorithm initializes the completion forest F to contain l + 1 root nodes
x0, x{o1}, . . . , x{ol} with labels L(xoi) = {{oi}}, where oi is nominal occurring in
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D, and begin to expand the completion forest by applying two sets of rules: a set of
non-deterministic rules NR, i.e.�-rule, choose-rule,≤ -rule, and the set of determinis-
tic rules DR, i.e, �-rule, ∃-rule, ∀-rule, ∀+-rule, ≥-rule, O-rule, and terminates when
the completion forest is complete: when either no more rules are applicable, where the
concept is satisfiable, or all applications of the rules result in a clash, where inconsis-
tency is met. Specifically, assuming there is no ABOX and no inconsistencies caused by
nominals, a clash is of the following two forms: (C1): for some concept names A ∈ NC ,
{A,¬A} ⊆ L(x), and (C2):for some role names S, (≤ n)S.C ∈ L(x), and there are
n + 1 S-successors y0, . . . , yn of x with C ∈ L(yi), for each 1 ≤ i < j ≤ n and
yi �= yj .

3 A Semantic Revision Operator in SHOQ
3.1 Definition

Our revision operator is based on the well-known Dalal’s operator [9]. The idea of this
revision operator is that the models of the revised knowledge base of the operator should
be the models of the newly received knowledge base which have minimal distance with
the original one. However, adapting such idea to DLs is not trivial, because DLs have
first-order features. Following the idea of Dalal’s operator, we first define the distance
between two interpretations and use it to define the distance between an interpretation
and an ontology.

Definition 1. (Distance between interpretations) Let I = 〈Δ, ·I〉 and I ′ = 〈Δ, ·I′〉 be
two interpretations over the same domain. Let d(MI , MI′

) = |MI � MI′ | where M
is a concept name or a role name. The distance between I and I′, denoted d(I, I ′), is
defined as follows:

d(I, I ′) =
∑

A∈LC

|AI � AI′ | +
∑

R∈LR

|RI � RI′ |

where S � S′ denotes the symmetric difference between sets S and S′, i.e., S � S′ =
(S ∪ S′) \ (S ∩ S′), LC and LR are respectively the sets of all concept names and role
names which are used to construct the DL ontology.

Definition 2. Let O = 〈T ,A〉 and O′ = 〈T ′,A′〉 be ontologies with empty ABOXes.
Let I be a model of O′. The distance between I and O, denoted d(I, O), is defined as
follows: d(I, O) = minI′|=Od(I, I ′), where I and I ′ are over the same domain.

Based on the above definition, we can define a total pre-order on the models of O′ as
follows: I �O I ′ iff d(I, O) ≤ d(I ′, O). We can also define the distance between
these two ontologies as d(O, O′) = minI|=O′d(I, O).

Incoherence doesn’t lead to the classical sense of contradiction: we may have d(O,
O′) = 0 if O ∪ O′ is incoherent but consistent. Therefore, unlike Dalal’s operator,
we cannot define the models of the revised ontology as the models of O′ which are
minimal w.r.t. the ordering �O. Instead, we append a fresh individual to each concept
in the ontology to render inconsistency so that we can apply the idea of Dalal’s op-
erator to define a revision operator for resolving incoherence. Based on the notion of
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enhanced ontologies in [5], we define the enhancement of O relative to O′ as O+
O′ =

O ∪ {C(iC)|for all the primitive concepts C of O ∪ O′, iC is a fresh name for C}.

Definition 3. Let O and O′ be two ontologies, and O+
O′ and (O′)+O be their enhanced

forms. The result of revision of O by O′, denoted O ◦D O′, is defined in a model-
theoretical way as follows:

M(O ◦D O′) = Min(M((O′)+O),�O+
O′

).

That is, the models of the result of revision of O with O′ are models of enhanced
ontology of O′ that are minimal w.r.t. the total pre-order �O+

O′
.

Example 1. For O = {C � ∀R.D} and O′ = {C � ∃R.¬D}, O+
O′ = O ∪ {C(iD),

D(iD)} (O′)+O = O′ ∪ {C(iD), D(iD)}. Therefore, given Δ = {a, b, c, d, oC , oD}, let
CI = {a, b, oC}, DI = {c, d, oD}, and RI = {(a, c), (b, d), (oC , oD)}, (iC)I = oC

and (iD)I = oD , we have I |= O+
O′ . Let CI′

= {a, b, oC}, DI′
= {c, d}, and

RI′
= {(a, c), (b, d), (oC , oD)}, (iC)I

′
= oC and (iD)I

′
= oD I ′ |= (O′)+O . So

d(I, I ′) = 1. Therefore, I ′ ∈ Min(M((O′)+O),�O+
O′

) and thus I ′ ∈ M(O ◦D O′)

Our revision operator leads to a coherent ontology while preserving the consistency of
the resulting ontology.

Theorem 1. Let O and O′ be two ontologies with empty ABOXes and O′ be consistent
and coherent, then O ◦D O′ is coherent and consistent.

3.2 Syntactic Formulation of Our Revision Operator

The syntactical formulation is inspired by the work in [12], in which a propositional
knowledge base K revised relative to a propositional formula φ using Dalal’s operator
is query-equivalently formulated as a cardinality-circumscription theory, where each
atomic proposition of K , say p, is substituted by a fresh name, say p′, and a fresh
proposition w defined as p = p′ is cardinality circumscribed. When dealing with first
order semantics, we formalize it by a notion of revision policy.

Definition 4. (Substitution) A substitution φ on ontology O is defined as [C/C′] where
C is the concept occurring in O and C′ is a fresh concept.

Given φ = [C/C′], we use Oφ to denote an ontology obtained by substituting each
occurrence of C in O by C′. For two substitution φ1 = [C/C′] and φ2 = [D/D′]
where C, D are different concept names in O and C′, D′ are fresh concept names, the
composition of φ1◦φ2 is defined as [C, D/C′, D′] and we have O(φ1◦φ2)

.= (Oφ1)φ2.
We now define the revision policy which is critical to the computation of our revision

operator.

Definition 5. (Revision Policy) Given ontology O, a revision policy P is a pair <
φ, nφ > where φ = [C/C′] is a substitution on a primitive concept C in O, and nφ

is an integer, called the degree of P. The ontology OP obtained by applying P to O is
defined in a model-theoretical way as: I ′ |= OP iff I ′ |= Oφ and there exists a model
I of O such that (1) CI′ � CI = nφ, (2) C′I′

= CI , and (3) DI′
= DI), for any

other concept name D in O which is different from C.
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Imposing an revision policy P =< [C/C′], n > to O will result in another ontology
OP with fresh concept C′ such that (1) interpretation of C′ in OP is the same as that
of C in O, and the interpretation of C in OP has a distance of n from that in O.It
is intuitive to resolve incoherence by changing the interpretation of primitive concepts
because unsatisfiability of defined concepts are usually caused by primitive concepts.
The following theorem states the validity of the definition.

Theorem 2. Given an ontology O and a revision policy P =< C/C′, nφ >, for every
model I of O, there exists a model I ′ of OP such that CI′ �CI = nφ, DI′

= DI , for
other concept name D in O[C/C′], and (C′)I

′
= CI .

Given two revision policies P =< φ, nφ > and Q =< ξ, nξ >, where φ = [C/C′],
ξ = [D/D′] and C, D are not synonyms, the composition of P and Q is defined as
P ◦ Q

.=< φ ◦ ξ, {nφ, nξ} >.

Definition 6. Given an ontology O, the ontology O(P ◦Q) obtained by applying P ◦Q

to O is defined in a model-theoretical way as: I ′ |= OP ◦ Q iff I ′ |= Oφ ◦ ξ and there
exists a model I of O such that (1) CI′�CI = nφ and DI′�DI = nξ , (2) C′I′

= CI

and D′I′
= DI for new concept names C′, D′, (3) EI = EI′

, for any concept name
E in O different from C and D. For two revision policies with same substitution, i.e.,
P =< φ, nφ > and Q =< φ, nξ >, P ◦ Q

.=< φ, max{nφ, nξ} >.

It is easy to check that for any revision policies P and Q and ontology O, we have
M(O(P ◦ Q)) = M(O(P)Q) = M(O(Q ◦ P)).

We now consider the syntactical counterpart of revision policy. For ontology O on
language L, given a revision policy P =< [C/C′], nC >, we can obtain an axiom set
AP consisting of the following axioms {o1, . . . , o|nC |} ≡ ((C � ¬C′) � (¬C � C′)),
where o1, . . . , o|nC | are fresh nominals not occurring in L, and furthermore, we assume
unique name assumption (UNA) on them.

The following theorem states that a revision policy P can be syntactically character-
ized by substitution and axiom set AP.

Theorem 3. Given ontology O, for a revision policy P =< φ, nφ > where φ = [C/C′],
we have M(OP) = M(Oφ ∪ AP).

By Theorem 3, we have the following corollary.

Corollary 1. Given ontology O, for two revision policy P =< φ, nφ > and Q =<
ξ, nξ >, where φ and ξ only substitute the symbols occurring in L. We have O(P◦Q) =
O(φ ◦ ξ) ∪AP ∪ AQ.

Now we characterize the query-equivalent syntactical counterpart of the operator by
revision policies, beginning with the following definition and lemma.

Definition 7. Given two ontologies O, O′ and models I and I ′ of O and O′ respec-
tively such that d(I, I ′) = d(O+

O′ , O
′+
O ), for primitive concept C such that CI �= CI′

.
We say Pi is generated from I and I ′ if Pi =< [C/C′], |CI � CI′ | >.
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Lemma 1. Let O◦DO′ |= C � D for GCI C � D. For all revision policies P1, . . . , Pn

generated from model I of O, and I ′ of O′ such that d(I, I ′) = d(O+
O′ , O

′+
O ), they

satisfies (1) Σn
i=1deg(Pi) is minimal; (2) OP1 . . . Pn ∪ O′ is coherent and consistent,

and (3) OP1 . . . Pn ∪ O′ |= C � D.

Theorem 4. Given ontology O and O′ and a query of the form C � D, where C and
D are concepts, then O ◦D O′ |= C � D if and only if for any sequence of revision
policies P1, . . . , Pn on L such that

∑
1≤k≤n nPk

is minimal and (OP1 . . . Pn) ∪ O′ is
coherent and consistent, (OP1 . . .Pn) ∪ O′ |= C � D.

4 A Tableau Algorithm for Policy-Based Revision

When an ontology is incoherent, its completion forest can only have clashes (C1),
(C2) given in Section 2. Our method focuses on resolving the clashes by extending
the tableau algorithm of SHOQ with several repairing rules so that no clash can be
met. The strategy for such repair is to generate revision policies with minimal degree.

Specifically, given ontologies O that is to be revised by O′, suppose that concept D
is unsatisfiable in O ∪ O′, the completion forest of D relative to O ∪ O′ will contain
clashes. Informally, we repair the above two kinds of clashes as follows.

– Concept Clash Repair. For clash (C1), we rename A by A′, and specify the differ-
ence between the interpretations of A and A′ as 1. Therefore, we generate a revision
policy P =< [A/A′], 1 > (see R1 in Fig.1).

– Role Clash Repair. For clash (C2), we rename C by C′, and specify the difference
between the interpretations of C and C′ as 1. Therefore, we generate a revision
policy P =< [C/C′], 1 >. If there are more than n + 1 different S-successors of x,
then we increase the degree of P (see R2 in Fig.1).

We extend the tableau algorithm to repair the clashes in the completion forests. For
concept C in an ontology, we arrange all of its completion forests into a hyper-tree,
in which each node is a weak complete completion forest, and each leave is a com-
plete completion forest in the sense of [8]. If C is unsatisfiable, then each leaf contains
clash(es), from which the revision policies will be generated. First we define the notion
of weak-completeness for the completion forest.

Definition 8. Given a SHOQ concept D in Negation Normal Form (NNF), a com-
pletion forest is weak-complete iff all rules in DR have been applied till no more of
these rules are applicable and none of the nondeterministic rules in NR has ever been
applied.

From a weak completion tree, we then use rules in NR to generate its successors by first
duplicating all the items from a node into a new one and then using nondeterministic
rules in NR to make it weak-complete.

Definition 9. Given two completion forests F1 and F2 which are weak- complete, F2

is the successor of F1, denoted as succ(F1, F2), if (1) F1 is weak-complete; (2) F2 is
generated from F1 by first copying all the nodes of F1, the structure between the nodes,
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and the labels of the nodes, and then exhaustively applying rules in NR, and (3) F2 is
weak completed by rules in DR. A node F1 is successor complete if all of its successors
have been generated.

Finally, we define the completion hyper-tree, which organizes a set of weak completion
forests by the above successor relationship.

Definition 10. Given a SHOQ concept D, the completion hyper-tree T of D is induc-
tively defined as follows:

1. The root of T, denoted as root(T) is initialized in the same way as tableau algo-
rithm of SHOQ does, and then completed to be weak-complete.

2. The subtrees of root(T) are denoted as T1, . . . , Tn, and succ(root(T), root(Ti))
holds for 1 ≤ i ≤ n, and Ti are all completion hyper-trees.

A completion hyper-tree is complete if (1) all of its non-leaf nodes are weak complete
and successor complete, and (2) all of the leaf nodes are complete in the sense of tableau
algorithm of SHOQ. When there are clashes in the set F of leaves of the hyper-tree,
for each node xi of F , R1 and R2 in Fig.1 will compute revision policies resolving each
clash. However, this is not enough because the concept influenced by the revision policy
may occur in O′ rather than O, which has no effect to O, as the following example
illustrates.

Example 2. Given O = {A = C1 � C2}, and O′ = {C1 � D, C2 � ¬D}, we have
a clash in the completion forest of A relative to O ∪ O′ as {D,¬D}, and by revision
policy P =< [D/D′], 1 > we can repair this clash. However, we find that P repairs
concepts in O′ rather than O. To deal with this case, we need to be aware that the clash
is caused by C1 and C2, which occur in O, and that C2 � ¬C1 (or C2 � ¬C1). Instead,
we can use < [C1/C′

1], 1 > (or < [C2/C′
2], 1 >) to repair the defined concept which

makes another concept involved in a clash.

The above example shows that if those concepts in the clash of the completion forrest
happen to be those in O′ but not in O, we need to revise the concepts in O that are
dependent on concepts in O′ that are involved in the clash. Based on this observation,
we define the notion of concept dependency in AGT.

Definition 11. Given ontology O, we use C to denote a set of concept names appearing
in O. Let C+ = C∪{¬C|C ∈ C}∪{{o}|for individual o inO}. A dependency relation
D is defined as a binary relation on C+ × C+ such that given two concepts C and C′

in C+, we say that C is dependent on C′ if there exists a specification C � D such that
C′ appearing in D. We use D to denote the dependence relation.

For each leaf of a completion hyper-tree which is complete, we can create a dependency
graph by Algorithm 1 with ⊥ on the top and � at the bottom. Based on the dependency
graph, we propose two tracing rules (see Fig. 1). As we assume that O ∪ O′ is an AGT
and both O and O′ are coherent, tracing rules can always find a concept occurring in
O, otherwise O′ itself is incoherent. Furthermore, the first concept it finds must be a
primitive concept in O, otherwise O ∪ O′ is not an AGT.
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Algorithm 1. Generating Dependency Graph
1: Procedure CreateDependencyGraph(T)
2: C+ := {C|C ∈ L(x)}, where x is the node of T.
3: DT := ∅
4: for all all C ∈ C+ such that there exists no C′ ∈ C+ which is dependent on C do
5: DT := {(⊥, C)} ∪ DT

6: CreateGraph(C, C+,DT)
7: end for
8: Procedure CreateGraph(C, C+,DT)
9: for all concept Ci ∈ C+ do

10: if C is dependent on Ci and (C, Ci) /∈ DT then
11: DT := DT ∪ (C, Ci)
12: CreateGraph(Ci, C+,DT)
13: else
14: DT := {(C,�)} ∪ DT

15: end if
16: end for

Based on the above algorithm, we can see that the dependency relation D for Exam-
ple 2 includes (A, C1), (A, C2), (C1, D) and (C2,¬D). The following theorem states
that Algorithm 1 terminates in polynomial time.

Theorem 5. Suppose T is a leaf of a complete completion hyper-tree, the algorithm
CreateDependencyGraph(T) terminates within polynomial time relative to |C+|, re-
turning a directed acyclic dependency graph D.

Extending the tableau algorithm with R1-rule, R2-rule, tracing rule-1 and tracing rule-2
in Figure 1, we can obtain a set of revision policies P1, . . . , Pn addressing each kind of
clash. To repair all the clashes occurring in a completion forest, we need the composite
revision policy:

P = P1 ◦ . . . ◦ Pn
.=

∏

1≤i≤n

Pi (1)

where each revision policy contains different substitution. We will later prove that the
above rules only make minimal change to the difference between the introduced concept
and the original concept. For a completion forest F , and for all the nodes xi of F with
revision policy sets Sxi , we have

PF =
∏

xi∈F

(
∏

Pxi∈Sxi

P
xi), DF =

∑

xi∈F

(
∑

Pxi∈Sxi

deg(Pxi)) (2)

For any concept D, it usually has more than one completion forest, due to the exis-
tence of nondeterministic rules in DR. Given all completion forests with their revision
policies, we will choose those whose degrees are the minimal:

P = minDFi
{PFi |0 ≤ i ≤ n} (3)

In Fig.1, composite rule composes all the revision policies for each node to obtain the
revision policy of F . Finally, synthesis rule chooses the revision policy with smallest
degree at each branch of the hyper-tree. See the following example.
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R1-rule if C,¬C ∈ L(x), then P =< [C/C′], 1 >

R2-rule if (≤ n)S.C ∈ L(x), and there are n + 1 S-successors y0, . . . , yn of x, C ∈
L(yi), for each 1 ≤ i < j ≤ n and yi �= yj , Rel �= ⇐ Rel �=\{yi �= yj},
and if there is no revision policy for C, then P = [< C/C′ >, 1] ; else P :=
increment(P). Rel �= is the binary relation recording all inequalities between
constants inherited from Tableau algorithm.

tracing-
rule-1 For a revision policy P =< C/C′, n > generated by R1-rule, if C occurs in

O′, trace in the dependency graph of the completion tree to the nearest concept
D such that D occurs in O and D is dependent on C or ¬C, and change P to be
< D/D′, 1 >.

tracing-
rule-2 For a revision policy P =< C/C′, n > generated by R2-rule, if C occurs in O′,

trace in the dependency graph of the completion tree to the nearest concept D such
that D occurs in O and D is dependent on C, and change P to be < D/D′, 1 >.

composition-
rule

For a node F , for all the node xi of F with the revision policy sets Sxi of, PF =∏
xi∈F (

∏
P

xi∈Sxi P
xi), and DF =

∑
xi∈F (

∑
P

xi∈Sxi deg(Pxi))

synthesis-
rule

For a node F of TD and all its successors F1, . . . , Fn ∈ TD,
PF = minDFi

{PFi |0 ≤ i ≤ n}
Note: For P =< [C/C′], n >, increment(P) =< [C/C′, n + 1] >

Fig. 1. The tableaux of revision policy generation

Example 3. We consider ontologies O and O′ adapted from PROTON:

O Reservoir� Lake� HydrographicStructure, Lake� NaturalWaterRegion
HydrographicStrure� (≥ 3) Owns.Harbor � Hydrographic

O′ NaturalWaterRegion� (≤ 1) Own.Harbor

By applying R2, we can obtain a revision policy P =< [Harbor/Harbor′], 1 >.
The revised ontology will be OP ∪ O′ = O[Harbor/Harbor′] ∪ O′ ∪ {{o1, o2} ≡
((Harbor�¬Harbor′)�(¬Harbor�Harbor′))}. In this case, Reservoir is satisfiable.
As P is the only revision policy generated, for query-answering on OP ∪ O′, we have
Reservoir� (≤ 1)Owns.Harbor and HydroGraphicStructure�Facility now becomes
unknown.

However, HydroGraphicStructure�HydroGraphic still holds, illustrating the syn-
tax irrelevance of our method. Furthermore, we can also obtain Reservoir� (= 1)
Owns.Harbor. Intuitively, the introduced name Harbor′ can be regarded as an abnor-
mal Harbor, which is different from Harbor with one individuals. Such advantage can
also benefit to build consistent ABOX afterwards: for each individual of Reservoir, it
can only have one Harbor. If it is connected with more harbors, they are inferred to be
synonyms.

We now discuss properties of the extended tableau for revising a SHOQ ontology.

Theorem 6. A SHOQ-concept C in NNF is satisfiable wrt a RBOX R if and only if
the expansion rules can yield a complete completion hyper-tree, and at least one of its
leaves does not contain revision policies.
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Theorem 7. Given a SHOQ ontology O and a concept C, the extended tableau algo-
rithm, when applied to C, will terminate in finite steps.

The following theorem shows the correctness of our algorithm.

Theorem 8. Given two SHOQ ontologies O and O′, and an unsatisfiable concept C
in O in O ∪ O′. Let the complete completion hyper-tree of O ∪ O′ be TD . Then the
revision policy of TD is PD if and only if deg(PD) is minimal relative to all revision
policies P such that D is satisfiable in O1P ∪ O2.

The algorithm is applied multiple times to repair all unsatisfied concepts. As the revision
policies can be generated based on the framework of the tableau algorithm of SHOQ,
we have:

Theorem 9. Given a query Q, checking O ◦D O′ |= Q is EXPTime-complete.

5 Related Work

The work in [4,5] focus on the postulates of rational revision operators in DLs and no
concrete revision operator is given. In [13], two revision operators are given to revise
ontologies in DL ALCO but they only consider the inconsistencies due to objects being
explicitly introduced in the ABOX and their operators are syntax-dependent. Unlike the
AGM-oriented approaches, the revision operators presented in [1,14,15] delete some
elements from the original ontology to accommodate the new ontology and so they are
all syntax-dependent. In [5], the authors argue that incoherence is also important dur-
ing revision. However, they do not give a revision operator to deal with this problem.
The work on debugging and repairing (see, for example, [6,16]) may be applied to give
a revision operator that can resolve incoherence. However, these approaches are also
syntax-dependent. In contrast, our revision operator is syntax-independent. Our work is
also related to the work on updating ABOX in DLs [17] where an ordering between in-
terpretations w.r.t. an interpretation is given and this ordering is used to define an update
operator. In contrast, we define an ordering on the interpretations based on a distance
function which is not dependent on a specific interpretation and use this ordering to
define our operator.

6 Conclusion and Future Work

In this paper, we proposed a novel revision operator for SHOQ ontologies by adapting
Dalal’s revision operator. Since a straightforward adaption does not work, we used the
notion of enhancement of an ontology to define our revision operator. We then proposed
a notion named revision policy to obtain an ontology which is query-equivalent to an
ontology resulting the revision operator. We extended the tableau algorithm for DL
SHOQ by proposing some novel rules to generate revision policies to resolve clashes
in the original tableau. We showed that our algorithm is correct and that the complexity
our our algorithm stays at the same level as the complexity of satisfiability check in
SHOQ. Our framework can be easily adapted to OWL-DL or even more expressive
language such as SHOIQ.
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As a future work, we will consider other revision operators such as Satoh’s operator
[12]. However, this problem is very challenging because Satoh’s operator is not based
on cardinality-circumscription. We are also considering applying this work into real
Semantic Web system.
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